マックスウェルの方程式について

マクスウェルの方程式
https://ja.wikipedia.org/wiki/%E3%83%9E%E3%82%AF%E3%82%B9%E3%82%A6%E3%82%A7%E3%83%AB%E3%81%AE%E6%96%B9%E7%A8%8B%E5%BC%8F


エリック P. ドラード曰く:

(1b) : ファラデー-マクスウェルの式 … 磁場の時間変化があるところには電場が生じる(電磁誘導)。

「マクスウェルが導出した方程式はベクトルの各成分をあたかも互いに独立な量であるかのように別々の文字で表して書かれており、現代の洗練された形式ではなかった。 これを1884年にヘヴィサイドがベクトル解析の記法を適用して現在の見やすい形に書き改めた。しかも彼は既にそこで電磁ポテンシャルが消去出来ることを示して、方程式系を今日我々が知る形に整理していた。しかし、その意義は直ちには認められるに至らず、それとは独立に上記のヘルツの仕事がなされた。 ベクトル記法が一般化し始めるのは 1890年代半ばであって、ヘルツの論文ではまだそれを使っていない。いずれにせよ、このベクトル解析の記法の採用は場における様々な対称性を一目で見ることを可能にし、物理現象の理解に大いに役立った。」

四元数
https://ja.wikipedia.org/wiki/%E5%9B%9B%E5%85%83%E6%95%B0


「数学における四元数(しげんすう、英: quaternion(クォターニオン))は複素数を拡張した数体系である。四元数についての最初の記述は、1843年にアイルランドの数学者ウィリアム・ローワン・ハミルトンによってなされ、三次元空間の力学に応用された。四元数の特徴は、二つの四元数の積が非可換となることである。ハミルトンは、四元数を三次元空間内の二つの有向直線の商として定義した。これは二つのベクトルの商と言っても同じである。四元数をスカラーと三次元のベクトルとの和として表すこともできる。

四元数は純粋数学のみならず応用数学、特に3Dグラフィクスやコンピュータビジョンにおいて三次元での回転の計算(英語版)でも用いられる。これはオイラー角や回転行列あるいはそれらに代わる道具などとともに、必要に応じて利用される。

現代数学的な言い方をすれば、四元数の全体は実数体上四次元の結合的ノルム多元体を成し、またそれゆえに(非可換の)整域となる。実は四元数の全体は、最初に発見された非可換多元体である。四元数全体の成すこの代数は、ハミルトンに因んで H(あるいは黒板太文字で ℍ)と書かれる。またこの代数を、クリフォード代数の分類に従って Cℓ0,2(R) ≅ Cℓ03,0(R) というクリフォード代数として定義することもできる。この代数 H は解析学において特別な位置を占めている。というのも、フロベニウスの定理に従えば H は実数の全体 R を真の部分環として含む有限次元可除環の二種類しかないうちの一つ(もう一つは複素数の全体 C)だからである。

従って、単位四元数は三次元球面 S3 上の群構造を選んだものとして考えることができて、群 Spin(3)を与える。これは SU(2) に同型、あるいはまた SO(3) の普遍被覆に同型である。

1 Quaternion2

[中略]

「ハミルトンの死後も弟子のテイトが四元数の振興を続けた。同時に、ダブリンでは四元数が試験の必須題目になっていた。物理学と幾何学の主題においては、今日ではベクトルを用いて記述するような空間の運動エネルギーやマクスウェルの方程式などが、まったく四元数の言葉で記述されていた。四元数やほかの超複素数系を専ら研究するプロの研究機関である四元数学会 (the Quaternion Society) さえ存在した。

1880年代の半ばごろから、ギブス、ヘヴィサイド、ヘルムホルツらの創始したベクトル解析によって四元数は取って代わられるようになる。ベクトル解析は四元数と同じ現象を記述するために、四元数に関する文献から自由に用語法や考え方を拝借していたが、ベクトル解析のほうが概念的に簡単で、記法もすっきりしていたので遂には数学と物理学における四元数の役割は小さく追いやられることとなった。このような変遷の副作用で、現代的な読者にはハミルトンの仕事は難しく複雑なものと化してしまった。ハミルトンのオリジナルの定義は馴染みがなく、その書き振りは冗長で不明瞭である。

四元数は20世紀の後半になって、3次元の自由な回転を記述する能力を買われて、多用されることとなった。四元数による3次元の回転(姿勢)の表現は、3行3列の行列による表現と比べて小さくて速い。加えて、オイラー角と違ってジンバルロックが起きない。この特徴は、地上における上下方向のような絶対的な軸の無い、宇宙機のような3次元の自由度が完全にある場合の姿勢制御などでの利用に適しており、宇宙機以外にもCG、コンピュータビジョン、ロボット工学、制御理論、信号処理、物理学、生物情報学、分子動力学、計算機シミュレーションおよび軌道力学など、他にも多くの応用がある。

また、四元数は二次形式との関係性により、数論からの後押しも受けている。

1989年以降、アイルランド国立大学メイヌース校の数学教室は、科学者(2002年には物理学者のマレー・ゲルマン、2005年にスティーヴン・ワインバーグなど)や数学者(2003年のアンドリュー・ワイルズなど)からなる、ダンシンク天文台からロイヤル運河の橋までを歩く巡礼の旅を開催している。ハミルトンが橋に刻みつけた公式はもはや見ることはできないが。」

[以下省略]

Comments:

Comments:フォーム

  • URL:
  • Body:
  • password:
  • Private comment:
  • Only the blog author may view the comment.

Trackbacks:

Profile

Author:リアルNHK
何かお探しものですか?

貴方/貴女は



番目の訪問者です。

どうぞごゆっくりおくつろぎください。

Latest journals

Latest comments

Latest trackbacks

Monthly archive

Category

Search form

Display RSS link.

Link

Friend request form

QR code

QR